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A virtual lab to explore nonlinear oscillations 

Introduction 
Various linear systems constitute the backbone of introductory physics because they are described by 
mathematically simple linear differential equations. In particular, the treatment of oscillations in 
traditional physics courses is restricted, as a rule, to various harmonic oscillatory systems, whose 
behavior can be almost completely investigated analytically by means of rather simple mathematics 
accessible for college and undergraduate university students. However, we should realize that such 
restrictions may lead students to a distorted conception of oscillatory physics as a whole. Detailed 
investigation of linear systems is certainly very important, but insufficient.  
 
The periodically forced oscillator with harmonic potential gives only periodic motion of the same 
period in the steady-state response. Specifically, under sinusoidal driving force this steady-state motion 
is also purely sinusoidal – its spectrum consists of the single (principal) harmonic with the driving 
period. Various anharmonic potentials – corresponding to nonlinear restoring forces – can lead to a 
great variety of different modes of transient and steady-state responses, including subharmonic and 
superharmonic resonances, hysteretic transient and chaotic steady-state behavior. Chaos, which is a 
type of essentially unpredictable behavior exhibited by a variety nonlinear deterministic systems, has 
been a subject of intense interest during recent years. In order to observe chaotic behavior, however, 
the equation of motion must be nonlinear. Numerical simulation becomes then an essential tool to aid 
understanding of the phenomenon.   

The physical system 
A combined torsion spring pendulum with a non-balanced rotor (flywheel) whose equilibrium and 
potential well are produced both by the linear restoring torque of an elastic spiral spring and by the 
gravity, can serve as an ideal physical model for study of nonlinear oscillations. An attractive feature of 
using this model for academic purposes is the possibility of natural transition from a linear to nonlinear 
system.  
 
The simulated pendulum (figure …) consists of a rigid rod which can rotate freely in the vertical plane 
(about a horizontal axis). An elastic spiral spring is attached to the rotor. The spring provides the 
restoring torque whose magnitude is proportional to the angular displacement of the rotor from the 
equilibrium position: Nspr  =  −Dϕ. The other end of the spring either is fixed immovably (for 
investigation of free, or natural, oscillations of the rotor) or is attached to the exciter – the lever that can 
rotate about the axis common with that of the rotor. The spring is unstrained (that is, the rotor is in the 
equilibrium position) when the rotor is parallel to the exciter. The zero point of the dial corresponds to 
the vertical orientation of the exciter.  
 
Two massive weights are fixed to the rotor’s rod at equal distances from the axis of rotation. If the 
weights have equal masses, the rotor is balanced – its center of mass lies on the axis. In this case the 
force of gravity is not influential, and the only restoring torque is created by the elastic spring. The 
torsion spring oscillator with the balanced rotor is a linear system. Being perturbed from rest, the rotor 
executes natural oscillations about the equilibrium position. With the balanced rotor, these oscillations 
are purely sinusoidal (harmonic). Their frequency ω0 depends on the moment of inertia I of the rotor, 
and on the spring constant D:  

./0 ID=ω  (1) 

his frequency of natural oscillations occurring solely under the elastic restoring force is used further on 
as a convenient conventional unit of frequency, and the period of such oscillations T0 = 2π /ω0 is used a 
natural unit of time appropriate for the investigated model.  
 
The torsion spring oscillator becomes a nonlinear system if we make the masses of the weights 
unequal. For convenience, we consider that the distances of the weights from the axis, as well as their 
total mass, are hold constant – only the mass of one of the weights is decreased by transferring some its 
part to the other weight, so that the mass of the latter is increased by the same amount. Thus, when we 
perturb in this way the balance of the rotor, its moment of inertia remains the same. However, the 
unbalanced rotor is subjected to the additional torque created by the force of gravity. This additional 
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torque is proportional to the sine of the angle of rotor’s deflection from the vertical, just like for the 
ordinary pendulum. This makes the torsion oscillator with the unbalanced rotor a nonlinear system.  
 
The external excitation of the pendulum is realized in the model by constrained back and forth periodic 
motion of the exciting lever within some limits on both sides of the vertical position. This obvious (and 
easily visualized on the computer screen) mode of excitation can be referred to as the kinematical 
excitation because the motion of some part of the system (the exciter) is given rather than the explicit 
dependence on time of the exerted external torque. We assume that the angle ψ formed by the exciter 
with the vertical line sinusoidally depends on time: ψ(t) = ψmax sin ωt. 

The differential equation of the oscillator 
When the rotor is turned through an angle ϕ from the vertical, the restoring torque exerted on the rotor 
by the spring equals –D(ϕ – ψ), where ψ is the angle that indicates the momentary position of the 
exciter (relative the vertical line, which is assumed as the zero point of the dial). The torque created by 
the gravitational force equals ∆mga sin ϕ, where ∆m is the difference between masses of the upper and 
the lower weights, g is the free fall acceleration, and a is the distance between the centers of the 
weights and the axis. Applying to the rotor with the moment of inertia I the law of rotation of a solid 
about an axis, we can write 

.sin)( ϕψϕϕ mgaDI ∆+−−=!!  (2) 
Dividing all the terms by I and introducing the following notation 

Imga /∆=Ω , 

we obtain the following differential equation that describes the modeled system: 
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Here the term is added that describes damping of oscillations by viscous friction (γ is the damping 
constant, related with the dimesionless quality factor Q by the equation Q = ω0

2/2γ).  
 
The quantity Ω in the equation has the physical sense of the frequency of natural oscillations of the 
unbalanced rotor in the absence of the spring under the gravitational force, which can occur about the 
stable equilibrium position in which the heavier weight is below the axis. In the differential equation, 
we must consider Ω2 to be positive, if the heavier weight is above the axis at ϕ = 0 (in the vertical 
position, when the spring is unstrained), and negative otherwise. The first possibility, in which gravity 
acts in opposition to the spring, is certainly more interesting for investigating nonlinear behavior 
because it provides a great variety of different modes. 

Free (natural) oscillations 
In the absence of the external excitation, when the exciting rod is fixed in its middle (vertical) position, 
the oscillator, being perturbed from the state of rest, executes natural oscillations about the equilibrium 
position. With the balanced rotor, that is, if ∆m = 0, these natural oscillations are purely harmonic 
because they occur only under the elastic torque, whose value is proportional to the angular 
displacement of the rotor. Potential energy of the strained spring is proportional to the square of the 
angular displacement, and the corresponding potential well is exactly parabolic. The frequency ω0 of 
these oscillations is independent of the amplitude. This property of a linear oscillator is called 
isochronism.  
 
In the general case, when the rotor is unbalanced (when ∆m ≠ 0 – one of the weights is heavier than the 
other), dependence of the potential energy on ϕ is more complicated: 
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The graphs of the potential function U(ϕ ) for several values of Ω2 > 0 (the higher weight is heavier) 
are plotted in figure …  
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The upper curve corresponds to a balanced rotor (to the linear oscillator with Ω2

 = 0), that is, this 
potential well is purely parabolic. The lower curve corresponds to the second term in U(ϕ ) with 
Ω2

 = ω0
2, that is, to the (inverted) pendulum without a spring. Both curves are characterized by equal 

(but opposite) curvature at ϕ  = 0. Therefore the potential well for Ω2
 = ω0

2 has a flat bottom. The 
period of small oscillations in such a well tends to infinity as their amplitude tends to zero. The curves 
with Ω2

 < ω0
2 describe nonlinear oscillators with “hardened” restoring force whose value increases with 

deflection from the equilibrium position faster than for the linear oscillator – the slopes of such a 
potential well rise more steeply than those of the corresponding parabolic well with the same curvature 
at the bottom. The period of natural oscillations in such potential wells depends on the amplitude – it 
decreases as the amplitude is increased.  
 
To calculate approximately the period of such oscillations about the equilibrium position at ϕ  = 0, we 
can make use of the equation of natural oscillations without friction: 
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The power expansion for sine (sin ϕ ≈ ϕ  − ϕ3/6) yields the following approximate nonlinear equation:  
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We can search its solution as a superposition of the principal harmonic with frequency ω and amplitude 
ϕmax, and of the third harmonic with frequency 3ω and amplitude εϕmax: 
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Substituting ϕ (t) in the equation, we then equate to zero coefficients of sinωt and sin 3ωt, thus 
obtaining two equations, which determine the frequency ω and fractional amplitude ε of the third 
harmonic. Solving these equations, we find: 
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The simulation program allows us to easily verify this approximate value for the frequency of such 
nonharmonic natural oscillations. For example, if we take Ω2

 = 0.5 and ϕmax = 400, the simulation gives 
for the period T = 1.374T0, while the approximate theoretical value calculated with the help of this 
formula equals 1.373T0. 
 
When the upper weight of the rotor is considerably greater than the other, so that Ω2

 > ω0
2, the vertical 

equilibrium position becomes unstable, but two new stable equilibrium positions appear, which are 
symmetrically displaced on both sides of the relative maximum ϕ = 0. The angular positions of these 
displaced equilibrium points are determined by the following equation: 

,sin22
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whose solutions ϕ  = ±ϕequil can be easily found by iterations. For example, if Ω2
 = 2ω0

2, the 
equilibrium positions are found at ϕ  = ±108.60. The equilibrium positions are at horizontal orientation 
of the rotor (ϕ  = ±900) if Ω2

 = (π/2)ω0
2 = 1.5708ω0

2.  
 
The frequency of infinitely small natural oscillations about any of these displaced equilibrium positions 
is given by the following expression: 
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Small forced oscillations about the zero point 
 


